Redox artifacts in electrophysiological recordings.
نویسندگان
چکیده
Electrophysiological techniques make use of Ag/AgCl electrodes that are in direct contact with cells or bath. In the bath, electrodes are exposed to numerous experimental conditions and chemical reagents that can modify electrode voltage. We examined voltage offsets created in Ag/AgCl electrodes by exposure to redox reagents used in electrophysiological studies. Voltage offsets were measured in reference to an electrode separated from the solution by an agar bridge. The reducing reagents Tris-2-carboxyethly-phosphine, dithiothreitol (DTT), and glutathione, as well as the oxidizing agent H(2)O(2) used at experimentally relevant concentrations reacted with Ag in the electrodes to produce voltage offsets. Chloride ions and strong acids and bases produced offsets at millimolar concentrations. Electrolytic depletion of the AgCl layer, to replicate voltage clamp and sustained use, resulted in increased sensitivity to flow and DTT. Offsets were sensitive to electrode silver purity and to the amount and method of chloride deposition. For example, exposure to 10 μM DTT produced a voltage offset between 10 and 284 mV depending on the chloride deposition method. Currents generated by these offsets are significant and dependent on membrane conductance and by extension the expression of ion channels and may therefore appear to be biological in origin. These data demonstrate a new source of artifacts in electrophysiological recordings that can affect measurements obtained from a variety of experimental techniques from patch clamp to two-electrode voltage clamp.
منابع مشابه
Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture
Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...
متن کاملElectrophysiological, pharmacological and behavioral studies of different physiological roles of the nucleus paragigantocellularis
The nucleus paragigantocellularis (PGI) is located in the rostral ventrolateral medulla and has noticeable connections with some other brain nuclei, such as locus ceruleus, nucleus raphe magnus and periaqueductal gray. In rats it is 3 mm in rostrocaudal and 1 mm in mediolateral and 1 mm in the dorsolateral aspect. Anatomically and functionally, PGI has been divided into two subnuclei, retrofaci...
متن کاملElectrophysiological, pharmacological and behavioral studies of different physiological roles of the nucleus paragigantocellularis
The nucleus paragigantocellularis (PGI) is located in the rostral ventrolateral medulla and has noticeable connections with some other brain nuclei, such as locus ceruleus, nucleus raphe magnus and periaqueductal gray. In rats it is 3 mm in rostrocaudal and 1 mm in mediolateral and 1 mm in the dorsolateral aspect. Anatomically and functionally, PGI has been divided into two subnuclei, retrofaci...
متن کاملProbiotic treatment differentially affects the behavioral and electrophysiological aspects in ethanol exposed animals
Objective(s): Harmful effects of alcohol on brain function including cognitive phenomena are well known. Damage to gut microbiota is linked to neurological disorders. Evidence indicates that intestinal flora can be strengthened by probiotic bacteria. In this study, we evaluated the effect of probiotics administration on LTP induction in rats receiving ethanol.<em...
متن کاملThe Effect of Paxilline on Early Alterations of Electrophysiological Properties of Dentate Gyrus Granule Cells in Pilocarpine-Treated Rats
The dentate gyrus of hippocampus has long been considered as a focal point for studies on mechanisms responsible for the development of temporal lobe epilepsy (TLE). Change in intrinsic properties of dentate gyrus granule cells (GCs) has been considered as an important factor responsible in temporal lobe seizures. In this study, we evaluated the intrinsic properties of GCs, during acute phase o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 304 7 شماره
صفحات -
تاریخ انتشار 2013